Code: 20EE3601

III B.Tech - II Semester - Regular Examinations - JUNE 2023

SWITCHGEAR & PROTECTION (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Discuss the Principle and operation of SF6	L3	CO2	8 M			
		circuit breaker and mention the advantages						
		over other types of circuit breakers.						
	b)	Interpret the phenomenon of resistance	L4	CO4	6 M			
		switching and define RRRV.						
OR								
2	a)	Discuss with the help of neat sketch the	L3	CO2	8 M			
		construction and working of minimum oil						
		Circuit breaker (M.O.C.B).						
	b)	Analyze the current chopping with a neat	L4	CO4	6 M			
		diagram.						
UNIT-II								
3	a)	Discuss the principle of operation of	L3	CO2	7 M			
		induction cup relay with relevant diagram.						
	b)	Enumerate the differences between	L4	CO4	7 M			
		electromagnetic relays and static relays.						

		OR					
4	a)	Discuss the principle and operation of static relay with the help of block diagram.	L3	CO2	7 M		
	b)	Infer the operation of an induction disc type	L4	CO4	7 M		
		over current relay with the help of a neat					
		sketch.					
UNIT-III							
5	a)	Explain the working principle of a	L3	CO2	7 M		
		directional over current relay with the help					
		of a neat sketch.					
	b)	Infer why are differential relays more	L4	CO4	7 M		
		sensitive than over current relays?					
OR							
6	a)	Discuss the operational characteristics of	L3	CO2	8 M		
		mho relay in R-X plane. Explain how you					
		provide direction features to these relays?					
	b)	Infer the characteristics of instantaneous,	L4	CO4	6 M		
		DMT & IDMT relays.					
	Т	UNIT-IV		Ţ.			
7	a)	Discuss with a neat circuit diagram of the	L3	CO3	8 M		
		percentage differential protection scheme to					
		protect Y- Δ transformer.					
	b)	A 3-Ø transformer rated for 33KV/6.6KV is	L4	CO4	6 M		
		connected star/delta and the protecting					
		current transformers on the low voltage side					
		have a ratio of 400/5. Determine the ratio of					
		the current transformers on H.V.side.					

OR							
8	a)	Illustrate the rotor faults in an alternator.	L3	CO3	8 M		
		Briefly discuss the protection schemes					
		employed for these faults.					
	b)	Infer the operation of differential protection	L4	CO4	6 M		
		of bus bars with diagram.					
	•						
UNIT-V							
9	a)	Discuss the drawbacks of ungrounded	L3	CO3	8 M		
		neutral systems. Also enumerate the effects					
		of ungrounded neutral on system					
		performance.					
	b)	Infer the differences between equipment	L4	CO5	6 M		
		grounding and system grounding.					
	OR						
10	a)	Illustrate the protection scheme for	L3	CO3	7 M		
		transmission lines against direct lightning					
		strokes.					
	b)	Interpret Resistance grounding method in	L4	CO5	7 M		
		neutral grounding.					